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This paper aims to provide some observations on the merits and disadvantages
of Cartesian and cylindrical co-ordinate representations (CaCR and CyCR) in
modelling of wave propagation in layer-based elastic media and its engineering
applications. The observations focus on (1) di!erence and consistency in solution
procedure for wave motion in layer-based elastic media, (2) identi"cation of its
fundamental properties, (3) computational e$ciency in relation to wave motion
synthetics/simulation, and (4) basis for the applications to stochastic wave motion
modelling associated with uncertainty in complex medium structure as well as
source mechanism. Speci"cally, modelling of earthquake wave motion in
a layer-based elastic half-space is used for illustration. As a foundation for the
investigation, CaCR and CyCR for three-dimensional (3-D) wave motion are "rst
constructed in a concise and consistent form. Consequently, some basic
characteristics of 3-D wave motion in layered media (e.g., various surface waves)
can then be identi"ed in a uni"ed form for the aforementioned di!erent co-ordinate
representations. More importantly, the succinct representations for 3-D wave
motion provide a stepping stone for further study on wave motion modelling with
uncertainty in the Earth medium and source mechanism. These and the other
pertinent issues will be investigated in this study from the viewpoint of systematic
computer code development and computational e$ciency, which is substantial to
practical engineering applications.
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1. INTRODUCTION

Among continuum mechanics models for wave motions in layer-based elastic
media, Cartesian and cylindrical co-ordinate representations (CaCR and CyCR)
are probably the most widely used approaches as far as their engineering
applications are concerned (see Figure 1). While both approaches are
well-established theoretically in the past decades, further studies are needed with
respect to their engineering applications from the viewpoint of systematic computer
code development and computational e$ciency, due to the rapid advances of
computer technology.

Mathematically, 3-D wave motion in an elastic and homogeneous half-space can
be e!ectively solved by applying an integral transform approach. The pertinent "rst
study could historically date back to 1904 to Lame's problem [1]. Although a large
number of references in this area can be found in monographs [2}5], some recent
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Figure 1. CaCR and CyCR for a layered half-space with a seismic source.
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developments, especially those associated with the applications of advanced
computer technology into structural and geotechnical earthquake engineering,
have been made in the last two decades. In particular, the CaCR for wave motion is
further developed in references [6}12], etc., while the CyCR is in detail analyzed in
references [13}20], among others. While signi"cant improvements have been made
in computational e$ciency and accuracy in 3-D wave motion modelling with the
use of either CaCR or CyCR, little attention has been paid to (1) di!erence and
consistency in the solution procedure for wave motion, (2) consistency in
identifying its fundamental properties, (3) computational e$ciency in relation to
wave motion synthetics/simulation, and (4) basis for further applications to
stochastic wave motion modelling associated with uncertainty in the complex
medium structure as well as the source mechanism.
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One of the purposes of this study is to integrate previous theoretical
investigations and thus to provide an analysis of 3-D wave motion in a general and
uni"ed form. For illustration, modelling of earthquake wave motion in a layered
half-space is used. Speci"cally, CaCR and CyCR for 3-D wave motion are
constructed in a concise and consistent form. Consequently, some fundamental
characteristics of 3-D wave motion in layered media (e.g., various surface waves)
can then be identi"ed in a compatible form for the aforementioned di!erent
co-ordinate representations. More importantly, the concise representations for 3-D
wave motion provide a stepping stone for further study on wave motion with
uncertainty in earth medium and seismic sources. These and the other pertinent
issues will be "nally examined from the viewpoint of systematic computer code
development and computational e$ciency, which is substantial to practical
engineering applications.

2. CaCR AND CyCR FOR WAVE MOTIONS

2.1. PROBLEM STATEMENT

Earthquake wave motion is the result of propagating seismic waves in the Earth,
which are originally generated by a seismic source. Therefore, appropriate
modelling for wave motion in the Earth becomes crucially important for
synthesizing realistic earthquake wave motion.

Based on previous studies, seismic source mechanism can usually be described as
a slip or dislocation rupturing over a certain area of a fault, while the Earth is often
modelled as vertically non-homogeneous media, idealized as a layered half-space
with each layer being elastic and homogeneous (irregular surface/interfaces and
heterogeneity will be discussed later). Within this framework, seismic waves can
then be obtained by solving governing equations of motion subjected to a series of
double-couple forces that are equivalent to dislocations in the broken fault area. In
doing so, it is also required to have pertinent conditions satis"ed that are the
continuity conditions at each layer-to-layer interface and boundary conditions at
both free ground surface and in"nite (radiation condition).

2.2. FINITE INTEGRAL TRANSFORMATION APPROACH

For the sake of computational e$ciency, the aforementioned problem is usually
solved in the frequency}wave number domain, instead of the time}space domain,
with the aid of "nite integral transformation approaches. Speci"cally, triple-"nite
Fourier transforms are applied in CaCR for each and every physical quantity
involved (e.g., components of displacements and stresses) between the time}space
domain (x, y, t) and the frequency}wave number domain (i

x
, i

y
, u), while

double-"nite Fourier transforms and a "nite Hankel transform are used in CyCR
between the time}space domain (r, h, t) and the frequency}azimuthal order}wave
number domain (i

r
, n, u). It is noted that n represents azimuthal order, and

(i
x
, i

y
, i

r
) denote wave numbers in x, y and r directions, respectively, with

i2
r
"i2

x
#i2

y
. The wave motion responses in the transformed domain can then be
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found by solving a set of ordinary di!erential equations in each layer with depth
index z as the only variable. Such an approach will facilitate the solution procedure
not only for wave propagation in layers as well as wave re#ection and refraction at
interfaces and boundaries, but also for the waves generated by a seismic dislocation
source. After the wave motion responses in transformed domain are obtained, the
associated responses in the time}space domain can then be found by performing
the corresponding triple-inverse transformation.

To this end, wave motion representations become essential to the problem at hand.

2.3. REPRESENTATIONS FOR WAVE MOTIONS

By integrating previous pertinent studies, it can be shown that displacements and
stresses in time}space domain can be represented by a concise and consistent form
with the aid of orthogonal vector harmonics in transformed domain:

u (a, b, z, t)"Cs +
l

+
m

+
n

e*ut(=
R
e
R
#=

S
e
S
#=

T
e
T
), (1)

t (a, b, z, t)"Cs +
l

+
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+
n

ue*ut(F
R
e
R
#F

S
e
S
#F

T
e
T
), (2)

where u (a, b, z, t)"uaea#ubeb#u
z
e
z
and t(a, b, z, t)"pazea#pbzeb#p

zz
e
z
are,

respectively, vectors of displacements and stresses in the time}space domain, while
(e

R
, e

S
, e

T
) and (=m , Fm , Cs), m"R, S or ¹, s"a or y, denote orthogonal vector

harmonics and corresponding coe$cients. It is noted that (ea , eb , ez) are orthogonal
unit vectors in a, b, and z directions, where the pair (a, b) denotes (x, y) for CaCR
and (r, h) for CyCR. It can be shown (e.g., references [12, 15]) that (=m , Fm) are
related to the magnitudes of coupled P-SV wave motion if m"R and/or S, and to
the magnitudes of SH wave motion if m"¹.

Equations (1) and (2) indicate that three orthogonal components of physical
quantities in the time}space domain are decomposed into a series (triple
summations) of orthogonal components in the transformed domain, each of which
is associated with P-SV or SH wave motion component.

For CaCR, Cs"C
a
,n3/(¹

W
X

W
>
W

) represents a co-ordinate-system-based
coe$cient with (X

W
, >

W
, ¹

W
) being half-window lengths in the time}space domain.

The window size is selected so that the synthesized or simulated wave motion
within the window will not have alias signals due to window repetition. The explicit
expression for (e

R
, e

S
, e

T
) in CaCR is
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where i
x
"mn/X

W
, i

y
"nn/>

W
and u"ln/¹

W
with m, n and l being integers.

Conversely, the variables =m and Fm can be found in terms of displacements and
stresses in time}space domain:

=m (ix
, i

y
, z, u)"

1
(2n)3 P

TW

~TW
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where the asterisk denotes a complex conjugate and the dot between two vectors
stands for dot or inner product.

For CyCR, Cs"C
y
,2n/¹

W
/[R

W
J@
n
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W
)]2 with R

W
being the truncated

length in radial direction, J
n
the nth order Bessel function of the "rst kind, and the

prime on J the "rst derivative of J with respect to its argument. The explicit
expression for (e
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) in CyCR is
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where i
r
are the roots of the transcendental equations of J

n
(i

r
R

W
)"0. Similarly,

variables=m and Fm can be found as

=m (ir
, n, z, u)"

1
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2.4. CONSISTENCY IN TRANSFORMED DOMAIN

It can be shown that, with the use of wave representations of equations (1) and
(2), the governing equations of wave motion in the transformed domain (without
existence of external forces) are

d
dzG

w
fH"[A]G

w
fH, (13)
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where for P-SV waves, [A] is a 4]4 matrix and its elements can be found as
a function of layer properties, w"M=

R
,=

S
NT, and f"MF

R
, F

S
NT, while for SH

waves, [A] is a 2]2 matrix, w"=
T
, and f"F

T
. Based on the physical meanings

of (=, F), the coe$cient pair (w, f ) is thus related to either P-SV or SH wave
motion.

As indicated in section 2.1, a seismic source mechanism can be described as
a dislocation rupturing over a fault. If the size of a broken fault area is comparable
to the dominant seismic wavelength and/or the distance to an observation site,
which is usually so for near"eld motion, dislocation at the fault area can be replaced
by a series of double-couple forces, each of which is proportional to the discretized
sub-fault area, its associated "nal dislocation amplitude as well as surrounding
rigidity. It can be shown that with the use of continuity conditions at each layer-to-
layer interface and boundary conditions at both surface and in"nite, wave
responses at depth z in the transformed domain subjected to the dislocation at the
jth sub-fault, i.e., coe$cients (=m , Fm ) or (w, f ) at given (i

x
, i

y
, z, u) or (i

r
, n, z, u),

can then be found as follows:
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if z`
i~1

'z'z~
i
'z

s
. In the above equations, coe$cient i denotes imaginary unit

J!1 while i in the subscripts and parentheses stands for layer number. Therefore,
z
i~1

indicates the depth of the ith interface ( i"1 for surface), its superscript of
# or ! corresponds to the lower or upper side of the interface, z

sj
is the depth of

the dislocation at the jth sub-fault (Dw
sj
, Df

sj
) are the discontinuities of (w, f ) in the

jth sub-source area which are equivalent to the e!ects of a seismic dislocation
sources at z

s
and can be found in references [12, 15]. In addition, columns in

a matrix with sub-matrices M (i) and N(i) are the eigenvectors of matrix [A] in layer
i, R(z

i
, z

j
) and ¹(z

i
, z

j
) are known as re#ection and transmission matrices,

respectively, which characterize properties of wave propagation in the earth
medium between depths z

i
and z

j
. The explicit expressions of all the

aforementioned matrices can be found in Appendix A.
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At this junction, it is of interest to note that the response form in the transformed
domain, i.e. equations (14) and (15), is the same for both CaCR and CyCR.

The corresponding wave responses in time}space domain can "nally be found by
using equations (1) and (2) or the explicit form
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are the responses due to jth point source at (a
sj
, b

sj
, z

sj
, t

sj
) , in which uJ and p8 are the

components of displacements and stresses in transformed domain, which can be
easily found in terms of (=m , Fm) from equations (1)}(5) and (8)}(10). In particular,
uJ can be represented in CaCR by
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and in CyCR by
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3. FUNDAMENTAL RESPONSE PROPERTIES

As seen from equations (14) and (15), the responses will become in"nite or
singular at a certain set of (i

x
, i

y
, u) or (i

r
, n, u) if damping of the media is not
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considered. Such singularities can be identi"ed and related to special travelling
waves in the Earth, in the forms of P and S waves in a layer medium and surface
waves near ground surface or interfaces. This is detailed as follows, attempting to
provide a uni"ed version without referring to a speci"c co-ordinate system
involved.

3.1. HORIZONTALLY PROPAGATING P AND S WAVES

The singularities in matrices M(i) and N(i) of equations (14) and (15) can be found
if e

Pi
"R and/or e

Si
"R. This is equivalent to (see equations (A1)}(A5))
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which results in wavenumbers i
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(S) for P and S waves as

i
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Since uq
Pi

and uq
Si

represent the wavenumbers in the z direction for P and
S waves, respectively (see equation (A8)), equation (26) or (27) implies that waves
with the wave numbers in layer i being i

r
(P) and i

r
(S) are the horizontally

propagating P and S waves. Since such waves never propagate away from the depth
at which they are, it is obvious that those waves will not contribute to the responses
of equations (14) and (15).

3.2. RAYLEIGH WAVES

As a special case, consider a P-SV wave motion in a uniform half-space. The
singularities can then be found by letting the denominator of response expression in
equations (14) and (15) be zero (e.g., the denominator of R(z, 0) equals zero in
equation (14)), or equivalently DN

d
(1) D"0 (see equation (A15)). This yields, with the

aid of equation (A2)
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which is the well-known equation for Rayleigh wave in a half-space. It can be
shown (e.g., reference [2]) that i

r
(R), root of equation (28b), will be greater than

i
r
(S). For a layered half-space, the denominator of equations (14) and (15) is very

complicated. Its zeros cannot, therefore, be expressed in simple closed forms.
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3.3. STONELEY WAVES

Stoneley waves are a special form of a coupled P-SV wave motion, occurring at
the interface of two neighboring but di!erent-property solid media. It propagates
along the interface and decays exponentially with the distance away from the
interface. Because of the aforementioned properties, the singularity associated with
Stoneley waves can then be found by examining singularities of wave responses at
the interface, which are related to the wave re#ection and transmission at the
interface (see equations (A9)}(A14)). It can be found that the singularities of wave
re#ection and transmission (R and ¹) across the interface happen at the condition
(see equations (A9) and (A10))
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With the aid of equations (A1) and (A2), equation (29) is reduced to
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in which k
i
"ol2

Si
. It can be shown that equation (30) is completely consistent with

equation (5.110) in reference [2], despite the di!erent approaches used in obtaining
them.

3.4. LOVE WAVES

Love waves are a special form of SH wave motion, occurring only in a layered
half-space. It can be veri"ed easily that no singularity exists in equations (14) and
(15) for an SH wave motion in a uniform half-space. For the two-layer half-space,
the singularities can be identi"ed by letting the denominator of the SH wave
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responses in equations (14) and (15) be zero. This leads to
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The above equation is the well-known equation for Love waves in a two-layer
half-space. It can also be shown that i

r
(¸), the solution of equation (36), is between

i
r
(S

1
) and i

r
(S

2
). The singularities associated with SH waves in a half-space

consisting of more than two layers cannot be expressed in a simple form.

4. COMPUTATIONAL EFFICIENCY

While both CaCR and CyCR can theoretically be used to obtain wave responses,
computational e$ciency is probably one of the most common concerns for its
practical engineering applications. At this junction, computational issues for wave
motion responses in the following three aspects are examined, in order to provide
some observations on computational e$ciency of these two representations.

4.1. SINGLE OBSERVATION SITE WITH A POINT SOURCE

Since wave responses in the transformed domain to a point source (e.g., (=, F) or
(w, f ) or (uJ , pJ )) can be obtained at almost the same computational e!ort for both
CaCR and CyCR, the di!erence in computational time for these two approaches is
thus the triple-inverse transformation or summation (equations (18) and (19)). This
di!erence can be further narrowed down to double summations of m and n, since
summation on l is the same, which is related to the time}frequency transformation.
For a given-size window, say R

W
"JX2

W
#>2

W
, the summation e!ort on m (or n)

for i
x
(or i

y
) in CaCR will be almost the same as for i

r
in CyCR, in order to achieve

the same resolution. Therefore, computational e$ciency of these two approaches
can be simply perceived from the computational e!ort on the summation of n,
which is related to i

y
in CaCR and to azimuthal order in CyCR. It can be shown

[15] that the azimuthal order will be in the range of [!2, 2] for any kind of
dislocation source, leading the summation of n in CyCR to "ve terms at maximum.
In contrast, even if some quadruple symmetric or antisymmetric properties are used
in CaCR, which will reduce the summation e!ort on n to approximately
one-sixteenth at most while keeping the same resolution as m, the total summation
e!ort on n in CaCR, related to i

y
, will still be much greater than its counterpart in

CyCR, in order to obtain its reasonable resolution.
To this end, it is obvious that CyCR is computationally much more e$cient in

obtaining the responses at single observation site to a point source, i.e. equations
(18) and (19), than CaCR.
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4.2. SINGLE OBSERVATION SITE WITH MULTIPLE POINT SOURCES

In view of the above facts, the computational e!ort will be di!erent for CaCR
and CyCR to obtain the responses to multiple point sources, depending strongly on
the number of point sources as well as the location of observations.

Since the Fourier transformation has the shift property

TM f (x!x
s
, y!y

s
)N"e$(*ixxs`*ixys)TM f (x, y)N, (37)

where T denotes Fourier transformation (either forward or backward), the
summation on j (number of point sources) can be exchanged with the summation
on l, m and n in equations (16)}(19). As an example, the wave responses of equation
(16) in CaCR can be rewritten with the aid of equations (14), (15) and (18) as
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where +
j
uJ can be found in terms of +

j
= shown in equations (20)}(22) or more

speci"cally +
j
w (note: the relationship between (w, f ) and (=, F) can be seen in the

paragraph after equation (13)) from the following equation with the aid of
equations (14) and (15):
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With the use of the composite rule of equations (A16) and (A17), the factors
within summation on j in the above equation can usually be further reduced, thus
greatly reducing the computational e!ort on summation of j. Its limited case is
when all the point sources are located at the same depth, which leads equation (39)
to
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Equation (38) in conjunction with equation (39) or (40) indicates that the
computational time for wave responses at given single observation sites to multiple
point sources will be much less than the time needed for a point source multiplying
by the number of point sources. In other words, the computational e!ort for
multiple point sources is slightly more than that for a point source in CaCR.

In contrast, CyCR does not have such summation exchange advantages as
CaCR, since the Hankel transformation in CyCR does not have similar simple shift
properties as the Fourier transformation in CaCR. Therefore, the computational
e!ort for wave responses to multiple point sources in CyCR will be simply the
multiple times of the e!ort for wave responses to a point source, although
the former will be usually less than the latter in practical computation since most
of the coe$cients need to be calculated only once with respect to the summation
on j.

With the above in mind, it could then be concluded that CaCR will be more
computationally e$cient than CyCR if the number of point sources is relatively
large. Otherwise, CyCR is better in terms of computational e$ciency. For
illustration, an example is given as follows as a very rough estimation. If the
number of point sources is equal to or larger than n/(5]16), then CaCR is
computationally e$cient. In this calculation, it is assumed that the summation on
n in CyCR has "ve terms (which is also at maximum) and the summation on n in
CaCR is reduced to n/16 due to full utilization of quadruple symmetry (it will not be
achieved in practice). Otherwise, CyCR is better.

4.3. NEAR-FIELD MOTION AT DENSE OBSERVATION SITES

As one of the most important engineering applications of seismic wave motion
modelling, near"eld ground motion at dense observation sites is needed. The
pertinent purposes are multiple, e.g., in examining such nature of ground motion as
spatial variations and developing a seismic intensity map, etc. In addition, due to
lack of su$cient seismometers at the near"eld ground surface, synthesis or
simulation of near"eld motion at dense observations becomes substantial,
particularly after the 1994 Northridge and the 1995 Kobe earthquakes.

It is for the near"eld motion under consideration that the detailed information of
the source mechanism becomes much more important than for far"eld motion.
Accordingly, "ne discretization of a seismic fault is usually required. This is
equivalent to a large summation on j in equations (16) and (17). In the light of
comments on computational e$ciency discussed in section 4.2, CaCR is thus
computationally more e$cient than CyCR in the situation at hand. In addition,
since near"eld motions at dense observation sites are needed, the two-fold
summation on m and n in CaCR can be carried out by FFT, which will signi"cantly
increase the computational e$ciency by using CaCR to solve the problem at hand
compared with CyCR.

The observations from this section have also been veri"ed in the past decade with
the use of two computer codes entitled &&SEISMO'' and &&STOQUK'', which are
described in Appendix B.



WAVE MOTION IN LAYERED MEDIA 1205
5. FURTHER APPLICATIONS

While equations (16) and (17) could be used to synthesize or simulate seismic
wave motions in a layered half-space generated by an extended source, uncertainty
in both seismic source and Earth media has not been considered in the
aforementioned models, which will make the problem at hand more complicated.
The latter is particularly important to the nature of near"eld motion and its
implication for damage of large-scale structural and geotechnical engineering
systems. Nevertheless, the aforementioned model can be used as a stepping stone to
construct a more realistic seismic wave motion model by taking into consideration
various uncertainties.

5.1. IRREGULARITY AND HETEROGENEITY

As an example, consider the Earth as a layered half-space with slightly irregular
boundaries (surface or layer-to-layer interfaces) and/or laterally heterogeneous
layer properties. Seismic waves are originally generated by an extended seismic
dislocation source buried in one of the layers, say layer k, and then propagating
through the Earth media. They can be obtained by solving the governing equation

lMu(a, b, z, t)N"p (a, b, z, t) (41)

in conjunction with pertinent continuity and boundary conditions. In equation
(41), l is a linear operator, characterizing the layered half-space with lateral
heterogeneity/irregularity and being a function of the layer properties (such as wave
speeds and density in one layer) and the structure of the Earth media (such as
depths of irregular interfaces); and p"p

x
e
x
#p

y
e
y
#p

z
e
z

is the body force
equivalent to the e!ect of the dislocation at the broken seismic fault. The pro"le of
the irregular boundaries can be expressed by

z
j
(a, b)"zm

j
#ezs

j
(a, b ), (42)

where z
j

is the depth of lower bound of layer j ( j"1 in Figure 1), superscript
m denotes the corresponding mean part, and superscript s the corresponding
perturbed part. Similarly, the properties of laterally heterogeneous layer j can be
described by

s
j
(a, b)"sm

j
#ess

j
(a, b ), (43)

where s
j
represents the P wave speed, S wave speed or density of layer j respectively.

Correspondingly, the displacements may also be decomposed into two parts,

u(a, b, z, t)"um(a, b, z, t)#eus(a, b, z, t), (44)

where um is referred to as the mean wave "eld and eus as the scattered wave "eld.
Since the linear operator l is a function of the laterally heterogeneous layer
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properties and the depths of irregular boundaries, it may be expanded as a Taylor
series with respect to the corresponding mean values as

l"lm#els#O(e2), (45)

where lm denotes the mean linear operator, characterizing the wave motion in
a layered half-space without lateral heterogeneity/irregularity; els stands for the
"rst order scattered linear operation due to the lateral heterogeneity/irregularity;
and O (e2) denotes the order of e2 and higher terms which may be neglected in the
study, since the "rst order perturbation approach is considered adequate to reveal
the fundamental characteristics of the seismic waves in the layered half-space with
slightly lateral heterogeneity/irregularity.

Substituting equations (44) and (45) into equation (41) and neglecting the second
and higher order of smallness e, the following two sets of equations instead of one
(i.e. equation (41)) for the original problem can be found as

lmMum(a, b, z, t)N"p(a, b, z, t), lmMus(a, b, z, t)N"ps(a, b, z, t), (46, 47)

where for each irregular surface/interface and/or laterally heterogeneous layer,

ps(a, b, z, t)"!lsMum(a, b, z, t)N if z"zm
j

and/or z
j
)z)z

j`1
. (48)

The physical meanings of equations (46) and (47) are quite obvious and can be
explained as follows. Both the mean and the scattered wave "elds share the same
linear operator lm, which indicates that they should be computed on the basis of the
same layered half-space without the existence of lateral heterogeneity/irregularity.
The mean wave "eld is obtained "rst from equation (46) with body force
p distributed in the seismic fault area in the source layer, which is equivalent to the
e!ect of the seismic dislocation. The scattered wave "eld can then be found from
equation (48) in which the distributed "ctitious forces ps are computed in terms of
the mean wave "eld and the quantities of the lateral heterogeneity/irregularity
involved in the operator ls (see equation (45)). The total wave "eld in a layered
half-space with lateral heterogeneity/irregularity can "nally be obtained as
a superposition of these two "elds via equation (44). The solution of wave motions
in a perfectly layered half-space generated by equivalent body forces as described in
equations (46) and (47) can be easily found by equations (16)}(19).

5.2. COMPUTATIONAL DIFFICULTIES WITH CyCR

Theoretically, both CaCR and CyCR can be applied to solve equations (46) and
(47) and irregularity/heterogeneity problem. Practically, CyCR is very di$cult to
be used due to an una!ordable computational e!ort.

As seen from equations (46) and (47), the "ctitious forces for the scattered wave
"eld ps are obtained in terms of irregularity/heterogeneity and mean wave "eld. If
CaCR is used, the aforementioned forces in the time}space domain can be easily
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transformed into those in the frequency}wave number domain. It can be shown
[12] that with the shift properties of the Fourier transformation of equation (37),
the scattered wave response in the transformed domain in the media with the
deviation part of irregularity/heterogeneity being in the form of e*(i{xx`i{yy) is
proportional to the mean wave "eld response in the transformed domain at a shift
wave number pair. In other words,
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where R denotes a known function. Therefore, given the Fourier representation of
an irregularity (or heterogeneity),
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where i@
x
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W
and i@

y
"n@n/>

W
, the scattered wave response in the

transformed domain will be obtained as
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We digress to comment on the importance of equations (49)}(51). Unlike the
huge computational e!ort for the mean wave responses, which is described in
section 2 or more speci"cally in equations (14)}(19), equation (49) indicates that the
scattered wave responses can be obtained in terms of the solution of the mean wave
"eld with the appropriate wave number shift. The known function R in equation
(49) is actually a symbolic, relating only to some necessary product of known
factors and the mean wave responses. Since any irregularity is composed of a series
of simple sinusoidal variations (see equation (50)), equation (49) is thus regarded as
a fundamental solution of the scattered wave response to a sinusoidal irregularity.
The general solution is then given by equation (51), consisting of all the
fundamental solutions to di!erent fundamental sinusoidal irregularities.
Apparently, for the irregularity with only several dominant wavelengths which is
the most common case, the summation on m@ and n@ is very small compared with the
summation on m and n in equations (18) and (19). For the detailed analysis, the
reader is referred to reference [18].

In contrast, since the Hankel transform in CyCR does not have similar and
simple shift properties as the Fourier transform in CaCR, CyCR will obviously lose
the corresponding computational e$ciency as CaCR behaves. In particular, the
scattered wave responses in CyCR cannot be found in such a direct and simple
relationship with mean wave responses in the transformed domain as equation (51)
for CaCR. They can be obtained only by solving another almost independent wave
problem with the governing equations of motions being equation (47), similar to
solving the mean wave motion of equation (46).



1208 R. ZHANG
In addition, since most of the aforementioned uncertainties such as irregularity
can be easily described or simulated in Cartesian co-ordinates using the simulation
technique such as the spectrum representation method [21, 22], engineering
applications of CaCR for wave motions are expected to be more rigorous and
robust than CyCR.

6. CONCLUDING REMARKS

While observations from this study reveal that CaCR are more robust than
CyCR in many engineering applications from the viewpoint of computational
e$ciency, systematic investigation and engineering applications of wave motion
modelling, it never implies that CyCR is useless in one way or the other. Whenever
cylindrical problems are at hand such as pile or circular foundation}soil interaction
in a layered half-space, CyCR will be the best tool to perform the pertinent
investigation (e.g., references [23, 24]).

Although the observations on CaCR and CyCR for 3-D wave motion are
presented in this study mainly from the viewpoint of earthquake engineering
applications, they could also be applied to other pertinent wave issues such as crack
problems in sandwich-type composite plates.
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APPENDIX A: IMPORTANT MATRICES

For P-SV wave motion,
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and for SH wave motion,
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i
are, respectively, the P and S wave speeds and density in the
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To account for damping, real-valued speed l
Pi

and l
Si

can be replaced by a pair of
complex ones, i.e., by l
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)] and l
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)], where

sgn(u) denotes the sign of frequency u, Q
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and Q
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are the attenuation factors for
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P and S waves in layer i. The branch cuts for the radicals in the expression for q
Pi

and q
Si

are taken to be
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)*0. (A6)

The re#ection and transmission matrices in layer i, which is bounded by depths z`
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where
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The re#ection matrix at the free surface is

R (0`, 0)"![N
d
(1)]~1N

u
(1). (A15)

Based on the fundamental re#ection and transmission matrices for each uniform
layer, each interface between each pair of neighboring layers and the ground surface
(equations (A7)}(A15)), the corresponding re#ection and transmission matrices
between any two depths can be constructed using the composite rule [15, 22]
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APPENDIX B: COMPUTER CODES

The following two computer codes have been developed and used to verify the
observations presented in this study.
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SEISMO was developed primarily by G. Deodatis, A. Papageorgiou, M.
Shinozuka, and R. Zhang at Princeton University and University of Southern
California over the past 10 years. It uses the discrete wavenumber technique to
simulate ground motion as a result of wave propagation generated by rupturing
shear-slip over a broken fault area and scattered in a half-space with laterally
heterogeneous 3-D layers. The methodology is developed on the basis of the work
of references [1, 3, 7, 25, 26, 27]. Its validity and accuracy were veri"ed by
comparing the numerical results using SEISMO with corresponding results
obtained by reference [28]. Using seismologically consistent source models in
a layered half-space, SEISMO code has successfully synthesized both near and
far"eld motion in the 1968 Tokachi-Oki and the 1989 Loma Prieta earthquakes
(e.g., reference [29]). The magnitude (intensity), wave form (frequency content) and
time duration of the synthesized Loma Prieta earthquake ground motion have
been found to be consistent with the actual records.

S¹OQ;K was developed for modelling of earthquake ground motion and
simulation by Y. K. Lin, Y. Yong and R. Zhang in Florida in 1985}1991 and
continue to be modi"ed by Zhang at Princeton University in 1992}1995 and at
University of Southern California in 1995}1997. The model established in
STOQUK is capable of capturing both the geophysical and stochastic features of
earthquakes. The methodology is based on references [11, 14}17, 30}35]. The earth
is modelled as a layered half-space with irregular topography and sub-surfaces. The
in#uence of sub-surface irregularity on ground motion, and thus structures, can be
estimated both qualitatively and quantitatively. The wave motion representations
can be set within the framework of either Cartisian or Cylindrical co-ordinates. The
validity and accuracy of STOQUK results were veri"ed by comparing with
theoretical predictions and with corresponding results obtained by references
[9, 10] and SEISMO.
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